Reformulating Compressed Sensing to be used with Semi-Resolved Point Spread Function

and Light Curves for Space Object Imaging: LEO

Daigo Kabayashi and Carolin Frueh
School of Aeronautics and Astronautics, Purdue University
dkobayas @ purdue.edu,cfrueh@purdue.edu

Abstract

Optical observations are a cost-efficient way of collecting information about human-made space objects. Ideally, a
fully resolved image of any satellite and space-debris object could be created from observations without other guiding
information. The challenges are two-fold. Firstly, the distance between the observer and the objects is generally large
relative to the size of the objects; secondly, in ground-based observations, atmospheric turbulence affects the mea-
surements. Compressed sensing (CS) is a technique well-established in image compression. Under the condition of
sparsity, a resolved image can be recovered from a compressed version, containing only a subset of the information of
the original high-resolution image. In this paper, the classical CS framework is modified to be used for space-object
characterization. This paper focuses on objects in Low-Earth orbit, where semi-resolved imaging is available. How-
ever, the images are heavily degraded by atmospheric turbulence. The paper shows a high-fidelity simulation of the
atmospheric effect on the light propagation of a Low-Earth Orbit (LEO) space object. A new CS-based reconstruction
algorithm has been developed to recover a fully resolved image based on the simulated light curve and the atmospheric
point spread function (PSF). The effect of uncertainty in the PSF is explicitly shown, and the robustness of the method
is highlighted. The method applies to large LEO objects that are stabilized during the time of observation.

1. INTRODUCTION

Today, there are more than 100 million space objects around the near-Earth space environment [1] greater than 1
mm. Larger objects can be observed in a cost-efficient manner using ground-based optical sensors. Electro-optical
measurements can not only be used to determine orbits and infer trajectory information but also to characterize aspects
of the bodies beyond their center of mass. Light curve measurements are a temporal history of the light intensity
reflected off a space object [2, 3, 4]. The shape, attitude, and surface parameters are superimposed in a light curve.
Light curve inversion for human-made space objects is well-investigated [5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Howeyver, the problem is plagued with non-uniqueness inherent
to the problem, and the high dimensionality of the solution: three-dimensional shape information with n number of
facets with potentially unique surface parameters and a six-parametric rotational state. The states can be reduced by
requiring further assumptions on attitude, albedo shape, or a simplified attitude motion [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Alternatively, the states may be reduced by not
reconstructing a three-dimensional state with material properties but a two-dimensional image with a frozen attitude
state, which is the option explored in this paper leveraging methods known from compressed sensing.

Compressed sensing is a signal processing framework that uses sparsity to compress and recover a signal most effi-
ciently [33], [34]. A high-dimensional signal is mapped to a lower-dimensional signal via a so-called sensing matrix.
The sensing matrix needs to satisfy the Restricted Isometry Property and is typically designed to have random entries.
If the signal is sparse in a particular basis, the signal can be recovered by finding a solution with the smallest L; norm
that results in the compressed signal. Compressed sensing shows its true worth when it allows recovering an original
signal or image from a limited number of measurements that is significantly lower than the Nyquist/Shannon sampling
theorem limit.

In previous work by the authors [32], the recovery of a resolved image of an unknown space object has been achieved
based on its light curve using multiplicative noise, which is regarded as a sensing matrix.
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This paper develops a more rigorous model of light curve degradation by generating the atmospheric point spread
function (PSF) in an anisoplanatic imaging simulation. An LEO object is assumed to be observed from the ground
under the influence of atmospheric turbulence. First, a spherical wave is propagated from every point of an object
through the free space up to the top of the atmosphere. The output wave is subsequently propagated through a set of
phase screens that model the turbulence up to the center of the pupil of the PSF sensor. The propagated wave is then
used to compute the PSF. The PSFs from each point of the object are then used to compute a theoretical, so-called
pseudo, degraded image and corresponding light curve as observed from the aperture-limited ground-based telescope.
Finally, the sensing matrix that maps the original object to the light curve is computed, and the recovered image
is derived. In the paper, several scenarios of PSF degradation are shown: from using the exact PSF to the heavily
degraded one.

2. PRELIMINARIES

2.1 Optical Transfer Function

The optical transfer function (OTF) is the Fourier transform of a PSE. The OTF of the imaging system that consists of
an optical path through atmosphere and an optical lens system is given by

H(p) = Ham(p)Hait(p) (D

where Hym(p) is the atmospheric OTF and Hgis(p) is the diffraction-limited OTF of the optical lens system. Note
that these OTFs are both assumed to be circularly symmetric, and hence they are the functions of the radial spatial

frequency, p = |/ f2 + fy2 where f, and f, are the spatial frequency in x and y direction respectively.
The atmospheric OTF [35] is given by

5/3 1/3
Ham(p) =exp{—3.44<’1ffp> ll —a (W> H 2)
10 D

where A is the wavelength, f; is the camera’s focal length, ry is the coherence diameter [36], and D is the aperture
diameter. The parameter ¢ works as a switch of three different exposure conditions [37]:

for long-exposure imagery

for short-exposure imagery without scintillation 3)

Q
I
= = O

for short-exposure imagery with scintillation

The short exposures and long exposures are different in the way the atmospheric tilt is corrected. In both cases, the
image center wanders randomly in the image plane. In the long-exposure imagery, the exposure is assumed to be long
enough to average out the random tilts. In the short-exposure imagery, on the other hand, the exposure is so short that
the image is affected by only one realization of tilt.

The diffraction-limited OTF for a circular aperture is given by

[COS_I (;I%)_[)% 1—([;(_)2] ) P <pc @

0, otherwise

[

Hgir(p) =

where p. = 1/(Af,) is the optical cut-off frequency, and the f, is the f-number: f,, = f;/D.

2.2 Bandwidth and Nyquist Spacing

The anisoplanatic imaging simulation uses a two-dimensional discrete Fourier transform. The Nyquist grid spacing
for the discrete models of object and PSFs needs to be carefully considered to avoid aliasing errors.
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Figure 1: Schematic of the relationship between the image on a detector and the actual object size.

First, the Nyquist grid spacing of PSF is considered. As discussed in the Sec.2.1, the Fourier spectrum of the PSF, or
the OTF has a cut-off frequency of p.. In other words, it is strictly band-limited with the bandwidth of 2p.. Therefore,
the Nyquist spacing of the PSF is given by:

L _*M

O = 2p. 2D

&)

Second, the Nyquist spacing of the object model is considered. In the strict sense, the Nyquist spacing completely
depends on the object model that is used. Alternatively, this study considers the pixel spacing of the object model
such that the image of the object observed on a detector has a Nyquist spacing, 8. Figure 1 shows the one-to-one
relationship of the image on a detector and the actual object. The field of view (FoV) of a telescope is given by

_1 { wcep wcep
FoV =tan™! ( ) ~ (6)
Je fe
where weep is the side width of the detector. Thus, the width of the FoV is
L
Wroy & FoV - L = V;CCD 7
4

where L is the distance between the detector and the object. On the other hand, the side length of the object image on
CCD s

NopjAfo
2D

wp = Nypjdp = ¥

Since the ratio between the width of the FoV and the actual object size should be preserved on the detector, it follows
that

Wo wy

=— ©))
WFov  WceD
Therefore, the side length of the actual object is obtained by equating Eqs.6 - 9:
Nopirdfe L AL
Wo =Wy weow _ NopjAJi Lween/fe AL obj (10
weep 2D wcep 2D
Thus, the Nyquist spacing of the object model is computed by
) AL
8= o =2 (11)
Nopj 2D

Hereinafter, this grid spacing is used when modeling the object discretely.
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Figure 2: Geometry of the optical wave propagation of a LEO object.

3. LIGHT PROPAGATION MODELING

3.1 Overview

The numerical wave propagation through free space and turbulence is simulated for an LEO object. First, a spherical
wave is emitted from every point of the object plane and propagated through free space over distance L., Where
there exists almost no atmosphere. Subsequently, the optical wave is propagated through the atmospheric turbulence
from the upper atmosphere to the ground. The random phase fluctuation due to the turbulence is modeled as a set of
extended phase screens that are equally spaced over distance Ly,. The extended phase screens are modeled discretely
by an array of size Aex X Aext- They are cropped to generate local phase screens of size A X A (< Ay ), within a
predefined distance of the optical path from each point of the object. Figure 2 shows two sets of local phase screens as
blue and green squares. Finally, the propagated wave is used to compute a point spread function (PSF) corresponding
to each point of the object.

Ideally, the PSFs are computed for all the pixels of the object plane. However, to save computational time, the PSFs
are instead computed at sample points spaced by small pixel values (e.g, four pixels) in the object plane. The PSF
values at the non-sample points are computed by bilinear interpolation, which still preserves the spatial correlation of
the atmospheric turbulence.

After computing the spatially-varying PSFs, the degraded image of the object is computed by the spatially-weighted
average of the true object. The degraded image is the theoretical image of a PSF sensor, which may or may not be
identical to the ground-based telescope that is used for the imaging. This paper assumes that the ground-based sensor
has aperture and hence resolution, leading to an entirely unresolved image formed into a noise-affected, degraded
light curve. The degraded light curve is computed as the pixel summation of the degraded image. Therefore, the light
curve measurement is a linear mapping of the true object because of the linearity of the spatially-weighted average
computation. This linear light curve model is interpreted as a linearly-compressed image in compressed sensing with
a sensing matrix whose row is the spatial variations of PSFs.

The anisoplanatic imaging simulation used in this paper is an extension to free space and long-distance propagation of
the work by Hardie et al. [38], where the anisoplanatic imaging through the turbulence for short distances of 7 km is
introduced.

In the following subsections, more details about these procedures are described. In Section 3.2, the theories and
procedures to generate the extended phase screens are explained. In Section 3.3, the numerical wave propagation
method of each spherical wave from the object is described. In Section 3.4, the computation of PSF, the degraded
image, and the degraded light curve is detailed. In Section 3.5, the anisoplanatic imaging model is compared with the
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compressed sensing, and the sensing matrix is obtained. In Section 4, the recovery of the resolved image from the light
curve is shown.

3.2 Phase Screen Realizations
3.2.1 Coherence Diameter of Each Phase Screen

The atmospheric coherence diameter introduced by Fried [36] is the diameter, for which the turbulence starts to
seriously distort the optical field. For a spherical wave, the diameter is computed as

L 53 1735
_ 2 20 (%
ro = [0.423k /0 ce(5) dz} (12)

where k = 27/A is the wavenumber, A is the wavelength, and L is the propagation distance. C2 is the structure
parameter, which is a measure of the local turbulence strength [35]. The coherence diameter is typically of the order
of several centimeters.

The isoplanatic angle is an angular separation with which two point sources will have approximately the same PSF.
The isoplanatic angle is related to the integral of the C2(z) parameter:

L s/3 173/5
6 = [2.91k2L5/3/ C2(2) (1—5) / dz} (13)
0 L

The log-amplitude variance related to fluctuations in the optical wave amplitude, is given by:

L 5/6 5/6
2 _ 7/675/6 2 z _Z2
62 = 0.563k7/°L /0 C2(2) ( L) (1 L) dz (14)

Each layer of the atmosphere is discretely modeled as a phase screen with a local coherent diameter. Its coherence
diameter is assumed to be expressed as:

ro, = [0.423K2C2 Az (15)
Solving Eq.15 in terms of C,%i and substituting into the discrete versions of Eqs.12 - 14, it follows that
-3/5 -3/5
N N\ 3/3 N N\ 5/3
~ Zi —5/3 (Zi
fo=| Y 042322 (2)7 A =X 0) (T (16)
Ll ! (L) l l; (L)
-3/5 -3/5
R N \3/3 N \5/3
— 275/3 2 ( _d , _ 53 (1 % -53
do l2.91k L ; @) (1-7) Az,} [ZIL (1-3) " 68794 (ry) a7

52 — 0.563k7/6L5/61§‘1C,%[_ (%)5/6 (1- %)’WA@ — 1331 <§>5/6ﬁ; (ro,) 3 (%)5/6 (1- %)5/6 (18)

Note that the second terms of the equations are the discrete versions of the parameter values, and the third terms are
the results after the Cgi parameter is eliminated. Combining Eqs.16-18, a linear matrix equation is obtained as below:

(%)75/3 71\5/3 215/3 w\3/3 ;75/3
&7 5/6f> 5/6 S/GT) si6 5/(6T) 5/6 B
Toasesn | = | (& 1—-4 22 1—-2 N 1= : (19)
1 szg’;),sﬁ () g 5/L3) (2) L 5%) (%) 1 (ZN 5%3) s
6.87941573 ( o f) ( - T) ( - T) Toy

Given the positions of phase screens and the values of 7y, 6%, and éo parameters, the left-hand side and the first term

5/3

of the right-hand side in Eq.19 are known. Therefore, the local coherence diameter value roi- can be obtained by
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solving a constrained least squares optimization problem:

min ||b—As||3
S

\5/6 i\ 3/6
St 1.331k‘5/6L5/6(%> (1—9) <0.262
0<ry, Vi=1,...N

where b is the left-hand side of Eq.19. The matrix A and the vector s are the first and second terms of the right-hand
side of Eq.19.

3.2.2 Monte-Carlo Phase Screens

The extended phase screens can be computed by Monte Carlo method after computing the coherence diameter of each
phase screen. The following expression holds when assuming the turbulence-induced optical phase ¢ (x,y) can be
written as a Fourier series:

o(x,y)=Y Y comexpli2n(fox+ £, (20)

N=—00 PI=—00

where f,, and f,,, are the spatial frequencies in the x and y directionsm respectively, and c, ,, are the Fourier series
coefficients. The extended phase screens are designed such that the coefficients ¢, ,, have a Gaussian distribution with
a zero mean and a variance given by [37]:

(lenml®) = S5 (Feus ) A L5 Ay Q1)

where (-) denotes the ensemble average, and Afy, and Afy, are the frequency spacings in the x and the y directions,
respectively. The term S$VK is a modified von Karman phase power spectral density (PSD). The PSD for the i-th phase
screen is given by [37]:

0.023¢P/Pn
SZZVK(P) = 5B, e (22)
rO,» (p +p())

where p = /2 + fy2 is the radial spatial frequency, ro, is the coherence diameter of the phase screen, and p,, =

5.92/(2mly) and pg = 1/Ly are the coefficients with respect to the outer scale Lo and the inner scale £, respectively.
Turbulent eddies are randomly-distributed pockets of air due to the non-uniform velocity distribution. The outer and
inner scales are the average sizes of the largest and smallest turbulent eddies.

Therefore, the procedures for generating the phase screen is the following: First, the parameter ro, for each phase
screen is obtained by the method described in Sec.3.2.1. Based on these values, the modified von Karman phase PSD

04 03 02 01 0 01 02 03 04
x[m]

Figure 3: Example of the extended phase screen.
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is computed by Eq.22. This value is used to generate a white Gaussian variable with variance given by Eq.21. Finally,
based on Eq.20, the fast Fourier transform (FFT) is used to generate the phase screens. However, this FT method does
not produce an accurate statistics of the phase screens.

The subharmonic method described by Lane et al. [39] is implemented for the computation of a higher fidelity phase
screen. In this method, a high-frequency and low-frequency component are computed separately. The high-frequency
phase screen is computed by Eq.20. A low-frequency phase screen is generated as a sum of N, different screens, given
by:

Np 1 1
or(xy) =Y Y Y comexpli2n(fe,x+ fy,)] (23)

p=ln=—1m=—1

The random draws of the Fourier coefficients are generated at N, times with different grid spacings of Af, = 1/(3?W),
where W is the width of the sampling grid. This sampling allows generating a screen with varieties of frequency
components. The low-frequency phase screen ¢y (x,y) is then added to the high-frequency phase screen. Figure 3
shows one example of the extended phase screen.

3.3 Numerical Wave Propagation

The split-step propagation method for generating a PSF that corresponds to one sample point of the object is illustrated
in Figure 4. It involves a spherical wave and a set of N local phase screens that are cropped from the extended phase
screens based on the geometry as shown in Figure 2.

First, the wave propagation through the free space over distance Ly is considered. The point source is modeled by a
Dirac delta function:

upt(xay) = S(X,y) (24)
The wave after free-space propagation is computed by the Fresnel diffraction integral [37]:

ej kLfree
j A Lfree

e et ik )2 —_v)2 JkLree k(2.2
uo(x,y) = /7 /7 Uy (xph ypt) ¢’ iree [Gopt—2)2+(pt—)?] dydyp = e ¢! Tivee (®+?) (25)

j ;LLfree

Second, the propagation through turbulence of a distance Ly, is considered. The wave field is propagated through the
phase screens and free space sequentially by

ui(xvy;t) = [uifl(x»y;t) *hM,’ (x,y)] ej¢i(X7y;t)a (26)

for i = 1,2,...,N where the operation A x B represents a 2D convolution of A and B. Note that ¢;(x,y;t) is the
turbulence-induced random phase fluctuation that is modeled by the i-th phase screen, which is a function of time ¢
depending on a wind function. The term /,;; is the impulse response of free-space propagation for Fresnel diffraction

Point source Local phase screens

. Pupil plane
at a sample point
\? ~ Q /
i CCcD
"17’ | /7
-«
y A |y
o i
I Simulated PSF
Azy Az, ) Azy
| ) I
Zy = Leree Zy 22 . ZN-1 zy =1L
A )
Y Y
Free space Turbulence

Figure 4: Illustration of the split-step propagation of a spherical wave from a sample point of an object.
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between the (i — 1)-th and the i-th phase screens:

e JjkAZ;

JAAZ;

Ck (2.2
g, () = e (7 H77) @7)

Eq.26 is implemented by angular spectrum method described by Schmidt [37], which uses the fast Fourier transform
(FFT) to compute the 2D convolution. To accelerate the FFT, the number of discrete sample points of phase screens,
A is chosen to be a power of two. The sampling grid spacing of phase screens is determined by the critical sampling

size proposed by Volez [40]:
1/2
S — (athurb> (28)

N

This grid spacing gives the best use of bandwidth for Fresnel propagation simulation while avoiding an aliasing
problem.

3.4 Incoherent Point Spread Function

After the propagation simulation, the complex amplitude at the pupil plane, uy(x,y) is obtained. The generalized pupil
function is computed by:

_ i@y

p(x,y;t) = a(x,y) un(x,y;t) e” 2L (29)

where a(x,y) is the circular aperture mask denoted by

1 VX2+y*<D/2
a(x,y)=4¢ 1/2 /x*+y*=D/2 (30)
0 /x>4+y*>D)2

Note that D is the aperture diameter of the PSF sensor, and L = Lgee + Lurb 1S the total propagation distance. The last
exponential term in Eq.29 is the collimation effect by a lens. The incoherent PSF, & (x,y;?) is obtained by computing
the Fourier transform of the generalized pupil function, and then computing the squared magnitude of the result:

P(fu, fyst) = F {p(x,y:t)} (31)

hxst) = [P fist)] (32)

—_ —J
fx—%fg-,fy—rff

where f; is the focal length of the PSF sensor. The resultant incoherent PSF is then normalized to have a sum of 1.

The incoherent PSFs are computed for the point sources at all the sample points spaced by four pixels. The incoherent
PSFs for the other point sources of the object plane are computed, as mentioned before, by bilinear interpolation
method as illustrated in Figure 5. Given the incoherent sample PSFs at points Q11 = (x1,y1), Q21 = (x2,y1), Q12 =
(x1,2), and Q2 = (x2,y2), the incoherent PSF at a point P = (x,y) in the square Q11021 0201 is computed by:

h(x,y;t) = with(x,y13t) +warh(x2,y131) +wiah(x1,y231) +waoh(xz,y2:t) (33)
where w;;’s are the weight of each sample PSF:

(2 —x)(y2—) (x—x1)(y2—y) (2 —x)(y —y1) (x—x1)(y—y1)

SWy = Wy = Wy =
(x2 =x1)(y2—y1)

e (2 —x1) (2 —1) (2 —x1) (2 —1) (62 —x1) (y2— 1)
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Figure 5: Schematic diagram of the bilinear interpolation used for PSF computation.

3.5 Degraded Image, Light Curve, and Sensing Matrix

In the isoplanatic imaging, a PSF is space-invariant and hence a degraded image can be computed by a 2D convolu-
tion between a true object image and the PSF. In the anisoplanatic imaging, however, the PSF is not space-invariant
anymore. Therefore, the degraded image is computed by a sum of the object image spatially weighted by PSFs. The
pixel value of the degraded image at point (i, V) at time 7 is given by:

2, vit) =Y Y o —k,v—0hy y(k,L:1) (34)
k 1

where o(lL, V) is the true object image, and hy, v (k, £;1) is the space-variant PSF associated with the point source at the
point (i, V) of the true object image at time 7.

The grid spacing of the object model and the PSF needs to be adjusted to the same values before computing Eq.34. As
mentioned in Sec.2.2, the object is imaged on the PSF detector as a discrete model with a grid spacing of 67. On the
other hand, the grid spacing of the PSF obtained by Eq.32 is

P Afe
PSF 6=/V

which is not equal to dy. Therefore, the result of Eq.32 is resampled to the grid spacing of d; before implementing
Eq.34. Finally, the degraded image result is resampled to the grid spacing of the detector to get the final image. In the
resampling computation, a pixel binning instead of interpolation is used to preserve the sum of the pixel values.

(35)

The light curve intensity, or the brightness of a non-resolved telescope image at time ¢; is a summation of pixel values
of the degraded image:

yi=YY z(u,vit;) (36)
u v

which is in the units of W/m?. The light curve is simply a time sequence of such intensity measurements at m time
steps:

y=D1 v oyl 37)

Finally, the light curve model in Eq.36 and the image model in Eq.34 are adapted to compressed sensing. First, the
spatially-weighted summation in Eq.34 is interpreted as a matrix operation, as shown in Figure 6. Suppose we want
to compute the pixel value at a point (i, v) of the image. Then, the centroid of the corresponding PSF is shifted to the
point (i, V). The object model and the shifted PSF is multiplied pixel-wise, and the pixel summation of the result is
computed and assigned to z(i, V). These operations are given by:

(1, v) = Z 0O hy y shifted (38)

pixels
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Figure 6: Example of the computation of a pixel of the degraded image.

where © is a pixel-wise product operator, o is the object model, and /1y, v shifted 1S the shifted PSE. Both o and Ay, y shifted
are modeled as matrices but they can be reshaped into vectors. Let x and h; be the vector form of o and Ay, y shifeed
respectively, it follows that

z(p,v) =h{ x (39)

where 1 is the linear index of the point (i,Vv). Therefore, a vector form of the degraded image model, z can be
expressed linearly in terms of x:

hix hi
z= M x| = |y (40)

As in Eq.36, the light curve intensity is the summation of the entries of z, which can be expressed as:

!
yi=1"z2=1"7 |m | x (41)
where 17 = [1 1 ... 1] is an all-1’s vector. Comparing Eq.41 with Eq.43, a row of the sensing matrix is found to be
the superposition of all the shifted PSFs given by:
!
of =17 | (42)

Therefore, a row of the sensing matrix represents the spatial variations of PSFs, named a PSF map. The sensing matrix
is an interal element in the compressed sensing methodology [32].

4. IMAGE RECOVERY BY USING THE DANTZIG SELECTOR

The reconstruction algorithm developed here uses the compressed sensing scheme in order to recover a truthful image.
As the input, the measured light curve and the PSF map from the PSF sensor are used.
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First, the mathematical formulation of the problem is explained. The light curve measurement at m time steps, denoted
asy € R™, can be understood as a linear transformation of the true object image (x € RN, m < N) by a sensing matrix
® c R™MN:

y = dx 43)

Each row of the sensing matrix ((])jT € RM) is the PSF map at each time step, ¢ jfor j=1,...,m. Since the number of
measurements, m, is usually much smaller than N, this system is underdetermined.

Candes, Donoho, and Romberg [41] [33] [34] showed that it is possible to solve this underdetermined system by
finding a vector with the minimum ¢; norm that explains the measurement:

7 =arg myiHIIYHl st ly—PPy[2 < e (44)
x~¥y sty <N, (45)

where € is an error bound, and ¥ € R¥*¥ is a so-called dictionary, which is a basis to sparsify the vector x. The
solution 7 is a sufficiently sparse vector such that y = ®¥vy+ e for some small error term ||e||» < €. This error term is
called the sparse representation error (SRE).

The traditional approach just outlined has two major challenges. The first problem is the computational cost. The size
of the image vector tends to be N ~ 10°. It is computationally expensive to solve Eq.44 even for a small number of m.
There are some fast solvers available for this problem, but they tend to sacrifice the reconstruction accuracy.

The second problem is the ill-designed sensing matrix @ in this study. In the traditional approach, the equivalent
dictionary @Y is chosen so that it follows the Restricted Isometry Property (RIP), which guarantees the nearly perfect
reconstruction of the image x. In contrast, in the LEO imaging problem, a PSF map is used as the sensing matrix,
which is purely the result of atmospheric turbulence and is found not to satisfy the RIP condition, leading to inaccurate
reconstruction using Eq.44.

The following two solutions are explored in this paper: The first problem can be eased by narrowing down the region
where the object of interest resides in the image plane. The object location can be estimated from the combination of
the Airy disk imaging of the light curve in combination with a background correction and removal.

The second problem can be alleviated by solving a more robust alternative that is referred to as the Dantzig selector
[42]:
fr=argmin|[y [y st [ID7(y —Drm)ll2 < £ (46)

The Dantzig selector approach requires that the SRE (= y — Dy ;) is not significantly correlated with any of the columns
of D;. If the SRE follows a Gaussian distribution with variance 6 then the solution of the Dantzig Selector is nearly
optimal with a loss within a logarithmic factor of the ideal mean squared error [42] of oracle solution:

E|[9% — w3 < C(logN) - } min(3(i)?, 62), @7

where 7}y denotes the oracle solution.

In this paper, the image of the LEO object of interst is recovered by solving the problem described by Eq.46. The
problem is recast as second-order cone programs (SOCPs) and solved by the implementations in Chapter 11 of [43].
The intensiveness of computation is eased by implicitly computing any large matrix operation by conjugate gradient
method.

The resultant image is evaluated by an image quality metric called structural similarity (SSIM) index [44]. The SSIM
matches the human perceived visual quality and is hence superior compared to other traditional image quality metrics
such as the mean squared error (MSE) and the peak signal-to-noise ratio (PSNR). The SSIM represents the image
quality in the range [0, 1], where 0 denotes the worst and 1 denotes the best quality, respectively.

5. EXPERIMENTAL RESULTS

5.1 Anisoplanatic Imaging Illustration
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Table 1: Simulation Parameters

Parameter Value

Aperture diameter PSF sensor D=0.61m
Focal length PSF sensor fr=6.25m
Wavelength A =525nm
Nyquist pixel spacing of phase screens 6 =5.0630 mm
Nyquist pixel spacing of PSFs Of =2.6895 um
Nyquist pixel spacing of object plane 9, =0.1290 m
Pixel spacing of detector (CCD) dcep = 5.5 um

Propagation distance through free space L = 250 km
Propagation distance through turbulence Ly, = 50 km

Propagation step in turbulence Az =5km

Number of phase screens N=11

Extended phase screen samples Aext = 3072 pixels

Local phase screen samples A = 1024 pixels

Refractive index structure parameter C2=1.0x10"16 m~2/3
Inner scale fo=0.01 m

Outer scale Lo =300 m

Object model samples 257 x 257 pixels

Object plane side length 33.18 m

Pixel skip 4 pixels (65 x 65 PSF arrays)

The experimental simulations are implemented based on the simulation parameter values in Table 1. The true object
that is chosen in the simulations is the Hubble Space Telescope (HST), [45].

First, a set of eleven extended phase screens is computed as described in Sec.3.2. The values of the coherence diameter
and isoplanatic angle of the whole optical path are ry = 0.0584 m and 6y = 0.3675 urad, respectively. Based on these
values, the parameter values of individual phase screens are computed by the constrained least squares optimization.
The result of the coherence diameter of each extended phase screen is shown in Figure 8. Note that the last extended
phase screen is constrained to have rq, = oo to avoid the excessive tilt correlation following the Hardie’s approach

[38].

Subsequently, the numerical wave propagation through free space and turbulence is implemented by procedures de-
scribed in Sec.3.3. The spherical waves are propagated from sample points spaced by four pixels on the object plane
of size 257 x 257 pixels. In other words, 65 x 65 spherical waves are propagated in total. To model an imaging of
an object in LEO, the total propagation is set to be L = 300 km. Since the atmospheric turbulence has a significant
effect in a region up to the altitude of 50km, the propagation distances through free space and turbulence are set to be
Lfree = 250 km and L, = 50 km respectively.

Figure 7: True object image [45].
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Figure 8: Atmospheric coherence diameter values for individual phase screens
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Figure 9: Example of the propagated wave and PSF: (a) Irradiance of the propagated wave, (b) Phase of the propagated
wave, (c) Point spread function (PSF).

Figure 9 shows one example of the result of the propagated wave. The irradiance and phase of the propagated wave
are well-sampled on the sampling grid. The smallest local phase screen sample size to avoid aliasing problem is found
to be 1024 pixels. This large phase screen size slows down the computation of angular spectrum method, which needs
to be repeated 652 times in one simulation. To speed up the computation, all the FFT computations are implemented
on a GPU. As a result, the computation time for obtaining the whole image is shortened to 30 minutes.

The simulations are implemented for four different object sizes for illustration purposes: 15m, 10m, 6m, and 3m.
Figure 10 shows the results of the degraded images as they would arrive by the PSF sensor.

For comparison, the simulation results of the numerical wave propagation only through free space are shown in the
top row of Figure 10(a)-(d) and with atmosphere in the bottom row. Note that the total propagation distance is kept to
be L = 300 km for a fair comparison. As can be seen, the turbulence significantly smears and warps the image while
the free space propagation barely alters the details of the object appearance. Another noticable thing is that the shape
of the object is still recognizable in (e) and (f) but it becomes barely recognizable in (g) and (h), where it is basically
in the un-resolved regime already.

In the simulation at each time frame, the extended phase screens are shifted by several pixels to realize the temporal
correlation of the optical turbulence effect for temporally-changing phase screens for 80 frames. The size of the screen
shift is determined by assuming the wind speed is 1 m/s. The object size is fixed to 13.2m for this illustration. Figure
11 shows the results of the images and the corresponding PSF map at four time frames. As can be seen, the warping
and brightness of the object change over time due to the random fluctuation of the PSFs. This results in the fluctuation
of the intensity observed by the sensor. Figure 13 (a) shows the normalized light curve obtained by this simulation.
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Figure 10: Comparison of degraded images with and without atmosphere. Top row: without atmosphere, bottom row:
with atmosphere. Columns vary by object size: (a)&(e): 15m, (b)&(f): 10m, (c)&(g): 6m, (d)&(h): 3m.
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Figure 11: Time history of the degraded image and PSF map for object size of 13.2m with wind speed 1m/s blowing
from bottom to left in the images, and a frame rate of 40 frames/second: (a) Image at frame 1, (b) Image at frame 10,
(c) Image at frame 20, (d) Image at frame 30, (e) PSF map at frame 1, (f) PSF map at frame 10, (g) PSF map at frame
20, (h) PSF map at frame 30.
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Figure 12: Time history of the degraded image and PSF map for object size of 13.2m with high wind speeds from
bottom to left in the images, and a frame rate of 40 frames/second: (a) Image at frame 1, (b) Image at frame 10, (c)
Image at frame 20, (d) Image at frame 30, (e) PSF map at frame 1, (f) PSF map at frame 10, (g) PSF map at frame 20,
(h) PSF map at frame 30.
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Figure 13: Normalized light curve obtained by the anisoplanatic imaging simulation: (a) simulation results for 80

frames with wind speed 1m/s, (b) simulation results for 50 frames with temporally-uncorrelated phase screens, which
corresponds to a faster wind speed.
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The light intensity value is normalized by the intensity value at the first time frame for enhanced readability of the plot.
Since the wind speed is very slow, the light curve fluctuates almost continuously. More realistically, the wind speed is
the order of 10 m/s so the light should pass through a new set of turbulence layers that is independent from previous
sets of layers. The Figure 12 shows the images and corresponding PSF map corresponding to high wind speeds. While
on the PSF level the differences are deceivingly small, the corresponding light curve shown in Figure 13 (b) shows
significant differences. Now, the phase screens are uncorrelated. As a result, the fluctuation of the intensity becomes
more significant and discontinuous compared to Figure 13(a).

5.2 The Full Simulation and Recovery: Image Recovery by Dantzig Selector

For the following simulations, it is assumed that the imaging of the space object takes place such that the stabalized
object’s scene does not significantly change. This requires bright objects observed in rapid fashion, e.g., using CMOS
sensing techniques. Only under those conditions a single image representing the observations can be found.

5.2.1 Perfect PSF Map

The experimental simulation is conducted to reconstruct the true LEO image in Figure 7 at an altitude of 300 km based
on its light curve and the PSF maps. The object size is assumed to be most realistic 13.2 meters. High wind speeds are
assumed to be most realistic, the PSF that has been used is the one shown in Fig.12, leading to the light curve shown
in Fig.13(b).

The image size of the PSF map is 257 x 257. The simulation parameter values used are the same as listed in Ta-
ble 1, where the ground-based optical sensor generating the light curve is assumed to have the same or a smaller
aperture than the PSF sensor, as only the light curve information itself is extracted after simple background correction.

First, the degraded images of the LEO object and PSF maps are simulated for 2000 frames. The PSF maps are
reshaped into vectors and concatenated to form a sensing matrix of size 2000 x 2572. In this simulation, the light
curve is, of course, degraded because of the passage through the atmosphere. However, in this first simulation it is
assumed that the PSF map is perfectly known.

In each frame, a set of phase screens are generated such that the phase screens are identical and independent from
that of the other frames to account for fast wind speeds. The non-resolved light curve is computed. The region of
interest is applied to limit the number of pixels in the recovery.

The image is reconstructed by solving the Dantzig Selector problem. The tolerance for correlation is set to be 3e-3, the
tolerance for primal-dual algorithm to be 5e-3, and the tolerance for conjugate gradients to be 1e-8. The reconstructed
results are denoised by BM3D algorithm [46] to improve the image quality.

Figure 14 shows (a) the ideal image, (b) recovered image, and (c) denoised image. The images are color-coded for
better visibility. Even in the recovered image, the main body and the aperture door are clearly recognizable. The SSIM
index of the recovered image is 0.772. The denoised image has even better quality with SSIM index of 0.932, and it
clearly shows the solar panels that are darker than the main body.
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Figure 14: Comparison of ideal image, recovered image, and denoised image. (a) Ideal image of HST. (b) Image
recovered by Dantzig Selector. SSIM = 0.772. (c) Image after removing noise from the recovered image by BM3D
algorithm. SSIM = 0.932.

5.2.2 Noise-Affected PSF Map

In the previous simulation, it is assumed that the PSF map is affected by imaging constraints, such as object size and
pixel resolution of the PSF sensor, but that the generated PSF map is error free. This is, of course, not realistic.

Noise in the reconstructed PSF map is linearly mapped to noise in the sensing matrix, which is used in the image
recovery process. The dynamic range of the sensing matrix generated in the previous section is between 0.0249
(= pmin) and 0.1016. Defining a Gaussian white noise three-sigma interval of the noise can be assumed to be smaller
than p,,;,. The standard deviation of the noise is hence expressed in terms of percentage of p,,;, and five noise levels
have been simulated: 2%, 10%, 15%, 20%, and 25%. Figure 15 compares a slice of sensing matrix with and without
the additive white Gaussian noise. The first row of the sensing matrix is selected, and its entries are plotted. The added
noise level is 25%, which is the largest noise level used in this experiment.

Given the noisy sensing matrix and light curve, the same process of image recovery as in the prevous section is used
via the Dantzig Selector, and subsequent denoising using the BM3D method.

Figure 16 show the results of reconstruction and denoising for the HST with the true object displayed in Figure 7.
There is clearly a degradation in the image quality of the results of all noise levels, compared to the reconstruction
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Figure 15: Comparison of a slice of sensing matrix with/without noise. The noise level is 25%.
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(a) 0: 2%, SSIM: 0.768 (b) 10%, SSIM: 0.764  (c) 15%, SSIM: 0.762  (d) 20%, SSIM: 0.762  (e) 25%, SSIM: 0.761

(f) 2%, SSIM: 0.927  (g) 10%, SSIM: 0.910  (h) 15%, SSIM: 0.898 (i) 20%, SSIM: 0.896  (j) 25%, SSIM: 0.890

Figure 16: Reconstruction and noise removal of images for the HST with a noise corrupted PSF, resulting in a corrupted
sensing matrix. Top row: Recovered images for a noise level of (a) 2%, (b) 10%, (c) 15%, (d) 20%, and (e) 25%.
Bottom row: denoised versions of the recovered images directlys above using the BM3D method.

using the perfect PSF map displayed in Figure 14.

The denoising using BM3D method is certainly necessary at the higher noise levels surpassing 10%. Especially,
the solar panels of the HST become difficult to identify in the results for noise level of 20% and 25%. However, with
the help of BM3D algorithm, even at the highest noise level details are still clearly discernable and a SSIM value of
0.890 is achieved. These results show the robustness of the model to the inherent noise of the PSF estimation.

6. CONCLUSIONS

This paper shows the characterization of a stabilized object in Low Earth Orbit (LEO) using optical ground-based ob-
servations. The method requires rapid imaging. The inputs are a point spread function (PSF) map in the semi-resolved
scheme and an entirely unresolved light curve. The sensor obtaining the PSF and the light curve can be identical, or
the light curve sensor can have a smaller aperture.

General difficulties in the traditional characterization of space object properties from light curves are circumvented
by adapting the compressed sensing paradigm known from image compression because no three-dimensional model
is reconstructed, but only a two-dimensional projection. In other words, a resolved image of the object of interest is
recovered.

For the most realistic simulation, light propagation through free space and atmospheric turbulence is simulated in
high fidelity. For the propagation through atmospheric turbulence, anisoplanatic imaging using Monte Carlos phase
screens has been applied. Illustrations of the resulting degraded imaging for various object sizes have been shown.

Using the simulations, the incoherent PSF is used to generate a PSF map, which serves as the sensing matrix. Using
the Dantzig selector allows avoiding the Restricted Isometry Property requirement for the sensing matrix, which is
not fulfilled for a realistic PSF map. Assuming that the PSF map is perfectly known, near-perfect image recovery is
possible. Even with noise levels up to 25% in standard deviation, resolved image reconstruction with insights into
object surface details is possible when the resultant image is denoised after initial reconstruction.
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