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COMPRESSED SENSING FOR SATELLITE CHARACTERIZATION

Daigo Kobayashi∗ and Carolin Frueh†

Characterization of space objects around the Earth is an essential step in space sit-
uational awareness. However, direct resolved imaging is rarely possible because
of the large distances between a sensor and an object. This research discusses a po-
tential application of a compressed sensing technique to characterize an unknown
stabilized satellite in a known orbit from its non-resolved light curve. Compressed
sensing was originally developed for efficient signal compression and reconstruc-
tion. In this paper, simulations showed that compressed sensing is capable of
reconstructing resolved satellite images based solely on non-resolved light curves,
assuming a reference observation is available to estimate the so-called sensing ma-
trix. This result implies the great potential of compressed sensing in characterizing
space objects.

INTRODUCTION

In a framework of space situational awareness (SSA), it is necessary to detect new objects, track
the detected objects, and characterize them to predict their locations and identify them. Character-
ization implies the size, shape, and attitude of unknown space objects. There exist some methods
to tackle this problem by using an imaging approach. One of the most acclaimed examples is the
FGAN Tracking and Imaging Radar (TIRA),1 which is capable of obtaining a resolved image of
a 10-m size satellite in Low Earth orbit (LEO) by Ku-band radar. However, most Earth-orbiting
objects are too small or remote to be imaged with even the most state-of-the-art ground-based in-
strument.

On the other hand, a light curve-based method can be applied to objects in higher orbits includ-
ing geosynchronous orbits with an altitude of 35786 km. The basic idea is to estimate the shape
or orientation of an object based on its light curve, which is a time history of the intensity of light
reflected on an object. This approach has been used to characterize celestial objects. M.Kaasalainen
ad J.Torppa23 succeeded in obtaining a three-dimensional shape of asteroids including a moderately
nonconvex object. With a steady spinning attitude profile, light curve-based approaches also have
been used for artificial satellites. However, the characterization of man-made objects requires addi-
tional efforts because of their properties: complex surface properties, unstable attitudes, and highly
concave shapes. Calef et al.4 utilized thermal emissions and a light curve to recover the three-
dimensional shape of an object, assuming its orientation to the observer is known and the object is
convex. Linares et al.5 used angles data and light curves to estimate the most probable shape of
an object by using the unscented Kalman filter. Linares and Crassidis6 obtained shape and surface
parameters of a space object by the Bayesian inversion approach. Recently, Furfaro et al.7 used a
deep learning method to classify the shape of space objects into four categories. Fan, Friedman,
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and Frueh8910 implemented the light curve inversion considering the fact that real observations are
greatly affected by observation noise and the conditions for obtaining sufficient data for inversion.

Although much improvement has been made for the light curve inversion problem, it is still
challenging to estimate attitude, shape, and surface parameters simultaneously. Even when concen-
trating on the shape inversion problem alone, the problem is an ill-posed problem, which often has
multiple solutions and ambiguities. Therefore, this research proposes an imaging method that re-
constructs a resolved image of observed space objects based solely on the non-resolved light curve
data. The method to be used is based on the so-called compressed sensing.

Compressed sensing (CS) is a novel signal compression theory, which is capable of recovering
compressible unknown signals from a small number of random measurements even if they are inac-
curate and incomplete. A signal is compressed as a linear measurement by using a so-called sensing
matrix and then the signal is reconstructed by solving an optimization problem. The number of mea-
surements required by CS is far fewer than those required by the traditional Shannon/Nyquist sam-
pling theorem,11 leading to a paradigm shift in the signal processing field. In the field of aerospace
engineering, there have been some applications to enjoy this benefit. Aguilera et al.1213 used the CS
in a synthetic aperture radar (SAR) tomography to improve the quality of reconstructions. Daponte
et al.14 used the CS framework to design radio frequency (RF) sensors for localization and track-
ing of non-cooperative RF emitters. In remote sensing, CS led to new onboard instruments called
MPST and SPMT camera, which needed less storage space and less power consumption than clas-
sical CCD cameras15.16 It is also possible to apply CS to obtain clear pictures from incomplete
measurements.17 However, there are no examples of CS applications to a light curve measurement
so far.

Under some assumptions, a light curve of an object may be regarded as an object image com-
pressed by atmospheric noise, which is considered in this paper as a pseudo-sensing matrix in the
CS framework. However, there is a significant difference that hinders the direct application of CS
into a light curve. Since the atmospheric noise is a random process, no information is available
about the pseudo-sensing matrix, which makes the CS reconstruction a challenging task.

The approach presented in this paper is to utilize a previous or simultaneous observation of a
known satellite. This approach is similar to a technique called adaptive optics.18 In astronomical
observations, a star is obscured by unwanted wavefront distortions due to atmospheric turbulence.
The adaptive optics technique removes the effect of the distortions by observing a reference star or
an artificial laser-generated reference star.19 This research shows that this idea is also feasible for
estimating a sensing matrix.

The organization of this paper is as follows. First, theories of compressed sensing and its rele-
vance of a specific setup using a single-pixel camera are introduced. Second, the simulation scheme
of a light curve considering the atmospheric noise and attenuation is developed. That is used to
generate the results presented in this paper. The new model for this attenuated noisy light curve
is then compared with compressed sensing and a single-pixel camera. Subsequently, theories and
algorithms for noise removal techniques are introduced, which are used in the post-processing of
this research. Finally, an explicit satellite image is recovered from the attenuated noisy light curve
by new approaches based on the assumption that known satellites are observed simultaneously. Two
approaches are developed according to the availability of the known satellites.
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COMPRESSED SENSING

Theory

Compressed sensing is a mathematical theory proposed by Candes, Romberg, Tao2021 and Donoho22

in 2006. It is also sometimes referred to as compressive sampling or compressed sampling. It has
been widely used in signal compression methods such as JPEG, JEPG2000, MPEG, and MP3 stan-
dards.

In compressed sensing, a signal is sampled directly in a compressed form:

ȳ = Φx̄ (1)

where x̄ ∈ RN is an image vector, ȳ ∈ Rm(m � N) is a measurement vector, and Φ ∈ Rm×N

is a so-called sensing matrix. The sensing matrix compresses the image signal by mapping a high
dimensional vector into a lower-dimensional vector. This enables to sample an image signal in a
sampling rate which is much lower than that of the Shannon/Nyquist sampling theorem.11

For the success of compressed sensing, a signal needs to be either sparse or compressible. A
sparse signal is a vector with only k nonzero elements. In other words, the L0 norm of x̄, or the
cardinality of x̄ is k:

x̄ ∈ RN with ‖x̄‖0 = k (� N) (2)

However, most signals themselves are not sparse but can be expressed sparsely in terms of a certain
basis. This kind of signal is called a compressible signal, which is mathematically expressed as
follows:

x̄ = Ψγ̄ ∈ RN with ‖γ̄‖0 = k (� N) (3)

The matrix Ψ is typically square and called a sparsifying matrix. In this research, a discrete cosine
transform (DCT) matrix23 is used for this sparsifying matrix since most natural images are known
to be compressible by this matrix.

Another key element of compressed sensing is a sensing matrix Φ. For a stable reconstruction,
the sensing matrix needs to satisfy a measure called Restricted Isometry Property (RIP).24 Candes25

showed that randomness in the matrix guarantees the RIP. Therefore, this research uses a Gaussian
matrix whose entries are i.i.d. Gaussian random variables with zero-mean and 1/N -variance as a
sensing matrix.

If the signal x̄ is sparse or compressible, and if the sensing matrix Φ satisfies the RIP, the signal
x̄ is guaranteed to be recovered from the measurement ȳ by seeking the sparsest representation of
the signal x̄:

γ̂ = argmin‖γ̄‖0 s.t. ȳ = ΦΨγ̄ (4)

However, since this problem is sensitive to a perturbation, more robust alternatives are often solved:

γ̂ = argmin ‖ȳ −ΦΨγ̄‖22 s.t. ‖γ̄‖0 = K (5)

γ̂ = argmin ‖γ̄‖0 s.t. ‖ȳ −ΦΨγ̄‖22 ≤ ε2 (6)
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Eq.(5) is a sparsity-constraint problem while Eq.(6) is an error-constraint problem. Theoretically,
the solutions of these two problems are the same. One of these two problems is chosen according
to which information is given.

The most well-known solvers for these optimization problems are greedy methods and relaxation
methods. The greedy methods build a solution by choosing one nonzero element at a time, while the
relaxation methods approximate the problem as a continuous optimization problem. In this research,
one of the greedy methods, the batch orthogonal matching pursuit (batch-OMP) method26 will be
used because of its fast computation time. It lowers the computational cost of the classical OMP
method by implementing a progressive Cholesky update, and by pre-computing a Gram matrix and
some other coefficients.

Single-Pixel Camera

One of the most important applications of compressed sensing is a single-pixel camera introduced
by Takhar et.al.27 In compressed sensing, a linear measurement of a signal is implemented using
a sensing matrix. With a closer look at Eq.(1), each entry of the measurement vector (referred to
as yi) is an inner product between a row of the sensing matrix (referred to as φ̄Ti ) and the signal
x̄. Suppose the size of the signal is n2 × 1, these two vectors are reshaped into square matrices Φ
and X. The entry yi is expressed as a summation of the element-wise product between these two
matrices:

yi = φ̄Ti x̄ =
∑
all

Φi �X (7)

where � stands for the element-wise product. Therefore, the measurement vector ȳ in Eq.(1) can
be obtained by getting the element-wise product m times. This idea is practiced in a single-pixel
camera.

Figure 1 shows a schematic diagram of the single-pixel camera. This camera measures a scene
by first focusing the scene on a digital micromirror device (DMD) array by a convex lens. The
DMD is a grid of millions of micromirrors, each of which corresponds to each pixel of the observed
scene. The light fluxes are reflected off the mirrors in one of two directions: toward or away from
the photodiode, depending on the orientation of each micromirror. Only the light fluxes reflected
toward the photodiode are collected by a second lens and measured by a photodiode. One can see
that this DMD works as a binary alternative of the sensing matrix. The measurement is repeated
m times with different mirror patterns in DMD to get a measurement vector ȳ, and reconstruction
is implemented by CS solver. As a result, this camera is capable of imaging a scene with only one
single photodiode.

Figure 1. Single-pixel camera diagram
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ATTENUATED NOISY LIGHT CURVE MODEL

Light curve simulation

A light curve is defined as a time series of brightness measurements of an observed object.28 The
intensity of the light curve is observed by collecting the light which is reflected off the surface of
a space object. It depends on the geometric shape, surface properties, and positional relationship
between the object, the Sun, and the observer. In this research, a light curve is simulated by model-
ing a satellite as a 3D polygon model consisting of triangle facets by using the so-called ray tracing
technique. In the ray tracing, visible facets are selected from the polygon model by checking three
conditions: 1) the facet has to be above the observer’s local horizon, 2) the observer and the Sun
must be on the same side of the facet, 3) the facet must not be hidden by other facets.29 The third
condition needs extra care, and two cases need to be considered as shown in Figure 2. The first
case, (a), is a self-shadowing in which a light flux coming into a facet is obstructed by another facet.
The second case, (b), is an observer-shadowing in which a light flux coming out from a facet is
obstructed by another facet. Facets that pass all these three conditions are considered visible.

Figure 2. Two Kinds of Shadowing in Ray Tracing

The light intensity of each visible facet is computed by using the bi-directional reflectance dis-
tribution function (BRDF) model which consists of the Lambertian reflection term and the specular
reflection term:

I(t) = I0

n∑
i=1

Ai

π(rtopo)2
(S̄ · N̄i)

{
Cd(V̄ · N̄i) +

πτiCs(rSun)2

a2Sun

}
(8)

where I0 is the solar irradiance at 1 AU, n is the total number of facets, Ai is the i-th facet area, N̄i

is the i-th facet normal, rtopo is the distance between the object and the observer, V̄ is the object-
to-the-observer vector, S̄ is the object-to-the-Sun vector, Cd is the diffuse reflection parameter, and
Cs is the specular reflection parameter. The specular reflection is a mirror-like reflection which is
concentrated in a particular direction. Because of the finite size of the Sun, it allows half a degree
difference between the incoming and the outgoing light flux:

τi =

{
1 if |θincoming − θoutgoing| ≤ 0.5◦

0 otherwise
(9)

Synthetic Resolved Image Generation

Similarly, a synthetic image of the satellite is also generated by the rendering technique to see
how the satellite is illuminated. The basic idea is to set an imaginary image plane consisting of grids,
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which are referred to as pixels, in front of the observer. Light from the Sun reflects off the surface of
the satellite, passes through one of the pixels in the image plane, and reaches to the observer. Each
pixel value is determined so that it is approximately the same value with the intensity of the light
which comes through the pixel.

The first step of the rendering is the orthogonal projection of the 3D polygon model onto the
image plane. The coordinates of all the vertices of the 3D polygon model are transformed into a
new coordinate so that the z-axis is parallel to the object-to-the-observer vector, and the new xy-
plane is parallel to the image plane. These new (x,y)-positions of the vertices are rounded to the
nearest integer and converted to the pixel coordinates. The z coordinates of the vertices are called
depths, which is significant information in a later procedure.

The next step is rasterization. The vertices of the facets on the image plane are connected by line
segments based on the facet information of the original polygon model. The rasterization technique
approximates the line segments as a collection of pixels based on the digital differential analyzer
(DDA) algorithm.30 After all the edges are drawn on the image plane, the pixels circumscribed by
the edges are filled out by the scanline algorithm30 to approximate the facets on the image plane.

In the rasterization, pixel values need to be assigned to each pixel by a so-called shading tech-
nique. First, the brightness of each facet is computed in the same way as that of the light curve
simulation. This facet brightness corresponds to the total pixel value of the facet. In computer
graphics, there are some ways to distribute this facet brightness to each pixel. In this research, a
method called flat shading is used, where each pixel value is determined by simply dividing the
facet brightness by the number of pixels in the facet.

Another important procedure in the rasterization is hidden surface removal. Since all the facets
are projected onto the image plane in the first step, some facets which are hidden by other facets
are also displayed in the image. In such a case, multiple facets are overlapped on the image but
only one of them needs to be shown. This correction is done by the z-buffer algorithm using the
z coordinates, or depths, of the vertices obtained in the first step. This algorithm chooses the facet
closest to the observer and computes the pixel value based on the facet.

Figure 3. Orbit and 3D Satellite Model Used in the Simulation

The combination of all these techniques generates an image of the satellite model. One example
simulation is implemented as follows. The Astra 1KR satellite is modeled as a 3D model shown
in Figure 3 (b), which consists of 4028 facets. The surface property of these facets is set to be:
Cd = 0.8, Cs = 0.2 assuming that the satellite is made of aluminum, which is one of the most
common materials for spacecraft. The reflection property highly depends on the finish but its diffuse
reflection coefficient is often assumed to be around 0.8-0.9.29 The orbit is computed based on
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Figure 4. Atmosphere-free Light Curve and Corresponding Synthetic Satellite Images

the TLE data of Astra 1KR satellite obtained from the Space-track organization website.31 It is
propagated for 1437 minutes by SGP4 propagator from the initial epoch, 0:00:00 AM on 1-April-
2020 UTC. The resultant orbit is a geosynchronous orbit with nearly zero eccentricity. The observer
is located in Berlin at 51.17o N, 10.45o E.

The orientation of the satellite also needs to be defined. Active satellites are traditionally either
spin-stabilized or three-axis stabilized. Here, a three-axis stabilized satellite is assumed. Since the
parabolic antennas always need to be oriented toward the Earth, one facet of the satellite body (red
arrow in Figure 3 (b)) is fixed to the direction of the geocenter, and another facet (blue arrow in
Figure 3 (b)) is fixed so that it is always perpendicular to its orbital plane. Therefore, the solar
panels are not always oriented toward the Sun in this simplified simulation.

Figure 4 shows the results of a simulated light curve and corresponding synthetic satellite images.
The five images correspond to the five points of the simulated light curve. The summation of the
pixel values in each image is approximately equal to the light curve intensity at that time step. With
a closer look at the images, it is obvious that the magnitude of the light curve increases and get
fainter as the satellite has more shade.

Attenuated noisy light curve model

It is important to note that the light curve in Figure 4 does not consider attenuation or corruption
by atmospheric noise. In this case, all the light fluxes from the satellite reach to the observer without
being disturbed and hence the light curve intensity is a sum of the light intensity of all the facets:

I(t) = 1̄T ρ̄(t) =

n∑
i=1

ρi (10)

where ρi denotes a light intensity of the i-th facet. In a real light curve observation, on the other
hand, light fluxes from a space object pass through a turbulent atmosphere around the Earth before
they reach a ground-based sensor. Due to the fluctuation of refraction index of the atmosphere,
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the irradiance of light fluxes is affected unevenly. Some light fluxes may not be affected much
while other fluxes may be weakened severely or reflected toward the observer. Therefore, the most
straightforward way to model the noisy light curve is to simply exchange the vector 1̄ in Eq.(10) for
a Gaussian random vector, ξ̄:

I(t) = ξ̄T ρ̄(t) =
n∑

i=1

ξiρi (11)

where ρi is the light intensity of the i-th facet. This model is referred to as the attenuated noisy LC
model.

However, this model is not straightforward in terms of the application to compressed sensing. As
an approximation, this research uses an adapted model using a pixel-wise noise instead of a facet-
wise noise. First, a synthetic satellite image is generated corresponding to a light curve. This image
is vectorized and multiplied by a Gaussian random vector, φ̄:

I(t) = φ̄T x̄(t) =

npixel∑
i=1

φixi (12)

where npixel is a total number of pixels in the synthetic satellite image, and xi is the i-th pixel value
of the image. This model is referred to as the simplified attenuated noisy LC model.

Figure 5 shows a comparison of the effect of the different light curve models. The black line
graph is the same one in Figure 4. Compared to this atmosphere-free light curve, the attenuated
noisy light curves are shifted to higher magnitudes and are thus fainter, as expected. The simplified
attenuated noisy LC model results in a larger shift, whereas the overall noisy structure seems to be
mostly preserved.
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Figure 5. Comparison Between Atmosphere-free Light Curve and Attenuated Noisy Light Curves
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Comparison with Compressed Sensing

The example above considers an observation of a geostationary satellite over 24 hours for illus-
tration purposes. On the other hand, for realistic shorter light curve observations over limited time
frames, the solar motion is minimal, and the geostationary satellite looks approximately constant
during m measurements especially when its attitude is stabilized:

x̄i = x̄ = constant, ∀ i = 1, . . . ,m (13)

However, conditions of the atmospheric turbulence change even for the instantaneous period. Thus,
each satellite image should be subject to different atmospheric noise. Therefore, m intensity values
of the light curve are expressed by using the simplified attenuated noisy LC model as follows:

y1 = φ̄1x̄, . . . , ym = φ̄mx̄ (14)

The set of equations in (14) can be concatenated and expressed in the form of a matrix equation:

ȳ = Φx̄ (15)

This expression is exactly the same as that of a compressed signal (1) in compressed sensing where
the atmospheric noise matrix Φ corresponds to a sensing matrix. Therefore, hereinafter, the simpli-
fied attenuated noisy LC model is used for simulating the attenuated noisy light curve.

Figure 6. Comparison of a Single-pixel Camera and a Light Curve: (a) Observa-
tion by a Single-pixel Camera, (b) Observation via Atmosphere-free Light Curve, (c)
Observation via Simplified Attenuated Noisy Light Curve

This analogy can also be explained by a comparison between a single-pixel camera and a light
curve as shown in Figure 6. First, in an observation by a single-pixel camera, the light irradiance
from an object is multiplied by a random ratio based on the mirror pattern of a DMD array, and
their total intensity is measured by a photodiode as shown in Figure 6 (a). Similarly, in a light
curve observation, light fluxes reflected off a satellite are collected by a sensor. If the light fluxes
are not disturbed by the atmosphere, the light curve is a simple sum of the irradiance of the light
fluxes as shown in Figure 6 (b). However, in reality, light fluxes are attenuated and corrupted by
atmospheric turbulence. Therefore, the irradiance of the light fluxes is scaled randomly before being
observed. Thus, the attenuated noisy light curve measurement can be regarded as one measurement
in a single-pixel camera, and hence it has similarity with compressed sensing.
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However, in a real observation, it is almost impossible to know the atmospheric noise beforehand
and hence the matrix Φ is unavailable in Eq.(15). Therefore, the main goal of this research is to
reconstruct a satellite image x̄ based on its attenuated noisy light curve ȳ without prior knowledge
of the sensing matrix Φ.

DENOISING ALGORITHMS

In this research, noisy images are cleaned by the denoising algorithm as post-processing. In the
framework of compressed sensing, an image without noise is modeled using a matrix D′ and a
sparse coefficient vector γ̄:

x̄ = D′γ̄ with ‖γ̄‖0 ≤ T (16)

This matrix D′ is often referred to as a dictionary. A noisy image, on the other hand, is modeled by
adding noise v̄ to this clean image:

z̄ = D′γ̄ + v̄ with ‖v̄‖2 ≤ ε′ (17)

where the noise v̄ is often modeled as a Gaussian noise upper-bounded by ε. A basic idea to remove
noise from the noisy image z̄ is to find the best pair {γ̂, D̂′} whose representation error is within ε′.
However, the direct estimation of these variables is usually a challenging task.

One way to circumvent this issue is a so-called dictionary learning technique using training data
obtained by a patch-based method. First, overlapped patches of size p×p are extracted from a noisy
image. They are vectorized and concatenated to form a training data matrix, Z as shown in Figure 7.
It is assumed that the sparse representation described by Eq.(17) also exists locally for these small
patches:

Z = DΓ + E with ‖E‖F ≤ ε (18)

Based on this model, the denoising problem can be formulated as:

{Γ̂, D̂} := argmin ‖γ̄i‖0 subject to ‖Z−DΓ‖F ≤ ε (19)

where γ̄i is the i-th column of the matrix Γ.

There are several methods to solve this denoising problem. In this research, sparse-KSVD (k-
singular value decomposition) algorithm32 is chosen because of its fast computation and high accu-
racy. In this algorithm, the problem is simplified by a model called the double sparsity model. It is
assumed that the dictionary D also has a sparse representation in terms of a base dictionary, D0:

D = D0A ∀i, ‖āi‖0 ≤ T0 (20)

where āi is the i-th column of the matrix A. This assumption decreases the number of variables and
shortens the computation time. In this research, a DCT matrix is chosen for the base dictionary D0.
Using this double sparsity model, Eq.(19) is restated as follows:

{Γ̂, Â} := argmin ‖γ̄i‖0 subject to ‖Y −D0AΓ‖F ≤ ε, ∀i, ‖āi‖0 ≤ T0 (21)

The sparse-KSVD algorithm solves this problem by updating Γ and A alternately. While one of
them is fixed, the other is updated. This cycle is repeated until the stopping criterion is satisfied.
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Figure 7. Procedure for Obtaining Training Data by Patch-based Method

In this paper, the sparse-KSVD algorithm is used in two different ways. In the first method, the
algorithm is used to remove noise from one single noisy image as introduced above. This approach
is referred to as a 2D sparse-KSVD algorithm because it is applied to a two-dimensional image.
In the second method, on the other hand, the algorithm is expanded to a three-dimensional image,
which is called 3D sparse-KSVD algorithm. When multiple noisy images from a common source
are available, they are piled to form a 3D image. From this 3D noisy image, 3D cubes instead of 2D
patches are extracted to form training data by patch-based method, and a 3D dictionary is learned
by solving Eq.(21). This 3D sparse-KSVD algorithm performs better than the 2D sparse-KSVD
algorithm because it uses knowledge of a structure shared by multiple images.

REFERENCE SATELLITE APPROACH

This research proposes a method to estimate a target satellite image by compressed sensing with-
out prior knowledge of the sensing matrix Φ. This method assumes that some known satellites
(hereinafter referred to as reference satellites) are simultaneously observed with a target satellite
under common atmospheric conditions. In this paper, it is assumed that the resolved images of
the reference satellite are available in conjunction with the measured light curve of the reference
satellite.

This method is similar to an idea called a guide star in adaptive optics. The adaptive optics system
is a technique to improve the resolution of the astronomical images by sensing and correcting the
atmospheric aberrations.18 In this technique, a reference star or a guide star is observed to estimate
the atmospheric turbulence effect. This knowledge enables to adjust a deformable primary mirror
to get much sharper images of other stars than images obtained without adaptive optics. The guide
star can be either a heavenly body or an artificial star such as a sodium laser.19

Inspired by the idea of a guide star, it is assumed that there areN reference satellite images of size
n×n are available. These images are vectorized and concatenated to form a matrix Xref ∈ Rnpixel×N

where npixel = n2. Using this matrix, the light curves of the reference satellite images are expressed
as:

Yref = ΦXref (22)

Note that the sensing matrix Φ in Eq.(22) is the same as the one in Eq.(15) since the target satellite
and reference satellites are observed under the common atmospheric conditions. This research
proposes an idea to use Eq.(22) to estimate the sensing matrix Φ. There are two different approaches
according to the value of N , the number of reference satellites available.
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Full Rank Matrix Approach

The first approach assumes that an abundant number of reference satellite images are available:

N = npixel (23)

Moreover, these images are varied enough to be linearly independent, which is nearly always true
if the images are corrupted by random noise. Under these assumptions, the matrix Xref in Eq.(22)
becomes a full rank matrix. Therefore, the sensing matrix Φ can be simply obtained by inverting
the matrix Xref:

Φ̂ = YrefX
−1
ref (24)

After the sensing matrix Φ is estimated, the target satellite image can be estimated by solving
Eq.(15) by CS solver.

Rank-deficient Matrix Approach

The second approach considers a much realistic case where the number of images and light curves
of reference satellites are not sufficient for a full rank condition:

N < npixel (25)

In this case, the matrix Xref is a horizontal matrix, and hence Eq.(22) has infinitely many solutions.

However, with a closer look at the matrix Xref, one can notice that it is a sparse matrix because the
background of most satellite images is black. Moreover, it also has randomness due to corruption by
white noise. Therefore, the matrix Xref roughly satisfies the RIP condition, and it can be considered
as a sensing matrix. Thus, the matrix Φ is modeled as a compressible signal:

ΦT = ΨA s.t. ∀i, ‖āi‖0 ≤ T0 (26)

where a vector āi is the ith column of the coefficient matrix A, and Ψ is a DCT matrix. Using this
expression, Eq.(22) is reduced to the following form:

YT
ref = XT

refΨA = DA s.t. ∀i, ‖āi‖0 ≤ T0 (27)

where D = XT
refΨ. The matrix A can be obtained by solving either of the following problems by

CS solver in a column-wise way:

âi = argmin ‖ȳi −Dāi‖22 s.t. ‖āi‖0 = T0 (28)

âi = argmin ‖āi‖0 s.t. ‖ȳi −Dāi‖22 ≤ ε20 (29)

where ŷi represents the ith column of the matrix YT
ref. Once the matrix A is estimated, the sensing

matrix can be computed as:

Φ̂ = ÂTΨT (30)

Using this estimated sensing matrix, Eq.(15) can be solved by CS solver.
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Figure 8. Flowchart of Simulation 1

CHARACTERIZATION OF A SATELLITE BY COMPRESSED SENSING

In the following, the characterization of a satellite by compressed sensing is simulated under three
different scenarios. The first scenario is a proof-of-concept simulation where the sensing matrix Φ
is assumed to be known. The second scenario tests the validity of the full rank matrix approach. It
considers a case where the sensing matrix Φ is unavailable but many images and light curves of the
reference satellites are available. Finally, the third scenario tests the validity of the rank-deficient
matrix approach. It considers the worst case where the sensing matrix Φ is unavailable, and images
and light curves of the reference satellites are also limited.

In all these scenarios, it is assumed that the target satellite is stabilized and located in a known
geostationary orbit, and the reference satellites are located in the proximity. The observer is located
at an arbitrary ground station.

Simulation 1: Proof-of-concept Simulation

The procedure for this simulation is shown in Figure 8. A target satellite image is NASA’s TESS
satellite33 of size 128 × 128. A vector x̄ represents a vectorized target image and it is measured
by three different sensing matrices to get light curves in Eq.(15). These sensing matrices are all
generated by Gaussian random variables with mean 0 and variance 1/npixel where npixel = 1282

but with different number of measurements, m = 13325, 4096, 1444. Finally, the target image is
reconstructed by solving Eq.(5) or Eq.(6) by the batch-OMP algorithm. The noise of the solution
is removed by 2D sparse-KSVD algorithm.32 This simulation aims to show that the target satellite
image can be reconstructed by a compressed sensing scheme in the presence of the sensing ma-
trix. Therefore, in this particular simulation, the sensing matrices are given, and reference satellites
are not observed. Moreover, the impact of the number of measurements on the reconstruction is
investigated by comparing the results from three different sensing matrices.

The results are shown in Figure 9. The images in the first column show the simplified attenu-
ated noisy light curves, ȳ obtained in this simulation. The images in the second column show the
reconstructed results, and the ones in the third column show the denoised results. For the case of
the largest number of measurements m = 13325, the reconstructed image clearly shows the shape
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Figure 9. Results of Simulation 1

of the target satellite, and it becomes even clearer after being denoised. For the case of a reduced
number of measurements m = 4096, the reconstructed image deteriorates but the denoised image
clearly shows the satellite shape. For the case of the smallest number of measurements m = 1444,
the reconstructed image hardly shows the satellite shape but it becomes clear enough to identify the
satellite shape after being denoised.

Simulation 2: Full Rank Matrix Approach

In this simulation, the full rank matrix approach is illustrated. The procedure for this simulation
is shown in Figure 10. A target satellite image is the same as simulation 1. A vector x̄ represents a
vectorized target satellite image and it is measured by a sensing matrix Φ to get a light curve ȳ.

Subsequently, reference satellite images of size 128 × 128 are generated based on a 3D satellite
model. The satellite is assumed to be in a geostationary orbit and it is illuminated and observed
from random directions. The total number of images is 1282. They are corrupted by white noise,
vectorized, and concatenated to form a full rank matrix Xref. These images are measured by a
sensing matrix Φ to get a set of light curves Yref.

Assuming the matrices Xref and Yref are known, the sensing matrix Φ is estimated using Eq.(24).
Using this estimated matrix Ψ̂ and the light curve ȳ, the target satellite image is reconstructed by
solving Eq.(5) or Eq.(6) by the batch-OMP algorithm.
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Figure 10. Flowchart of Simulation 2

The results are shown in Figure 11. It took about 68 minutes to finish the computation in the
Space Information Dynamics (SID) group server. The first image is the true image for the sake
of comparison. The second image is a reconstructed result directly obtained by this approach.
Although this approach perfectly estimates the sensing matrix, the reconstructed result is noisy.
This is because of an error in the reconstruction process due to the nature of a Gaussian matrix. In
general, the use of a Gaussian matrix as a sensing matrix tends to cause some errors in compressed
sensing, and hence it is necessary to apply some noise removal methods as a post-process. The third
image is the result denoised by the 2D sparse-KSVD algorithm. The PSNR value has increased by
3.87 dB and the image is almost identical with the true image. Although some parts of the solar
panels and the star sensor baffle are still not clear, this result is clear enough to identify the satellite.

Figure 11. Results of Simulation 2

Simulation 3: Rank-deficient Matrix Approach

In this simulation, the rank-deficient matrix approach is illustrated. The procedure for this simu-
lation is shown in Figure 12. A target satellite image is the same with simulation 1 but it is smaller
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Figure 12. Flowchart of Simulation 3

(64 × 64) to avoid too much computational cost in the estimation of Φ. A vector x̄ represents a
vectorized target satellite image and it is measured by a sensing matrix Φ to get a light curve ȳ.

Second, reference satellite images of size 64×64 are generated based on a 3D satellite model. The
satellite is assumed to be in a geostationary orbit and it is illuminated and observed from random
directions. The total number of images is 8000. Among these images, 3277 images are randomly
chosen to form a matrix Xref because the choice of the reference satellite images greatly affects the
result of this simulation. These images are measured by a sensing matrix Φ to get a set of light
curves Yref.

Assuming the matrices Xref and Yref are known, the sensing matrix Φ is estimated by solving
Eq.(28) or Eq.(29) by the batch-OMP algorithm. Using this estimated matrix Ψ̂ and the light curve
ȳ, the target satellite image is reconstructed by solving Eq.(5) or Eq.(6) by the batch-OMP algorithm.
The noise of the solution is removed by 2D sparse-KSVD algorithm.

This whole process is repeated 9 times with a different set of reference satellite images. These
9 different results are merged to form a 3D-image of size 64 × 64 × 9 and its noise is removed by
3D sparse-KSVD algorithm. One purpose of this operation is to see the impact of the choice of the
reference satellite images. This approach considers the matrix Xref as a sensing matrix. Thus, the
result highly depends on the choice of the reference images. Another purpose of this operation is to
improve the quality of the noise removal. Since the matrix Xref does not perfectly follow the RIP
condition, the quality of the result would be worse than simulation 1. To compensate this defect,
the noise is removed by the 3D sparse-KSVD, which considers a common structure between the 9
results and gives better performance.

Figure 13 shows 9 results directly obtained by this approach. Even though the same procedures
are repeated 9 times, their PSNR values differ from each other. This is because a different set of
reference satellite images has been used for these results. The chosen reference satellite images
have been used to form a reference image matrix Xref. This matrix is then used as a sensing matrix
to estimate the matrix Φ. The quality of the estimated Φ affects the solution of the target image. As
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Figure 13. Noisy Results of Simulation 3

a result, the choice of reference satellite images has affected the quality of the target image. This
also explains why these 9 results are much noisier than the result in Figure 11. In this simulation,
the estimation of the matrix Φ is never better than that of simulation 2 because of the ill-designed
sensing matrix Xref. It does not strictly follow the RIP condition which is required to guarantee a
stable reconstruction in compressed sensing. For the same reason, the computation time gets longer,
and it took about 8 hours to finish the procedure per image in the SID group server.

Figure 14 compares the true image, one of the noisy results, and two images obtained after de-
noising. The second image is the slice 4 in Figure 13, which has the largest PSNR value in the
noisy results. The third image shows a result obtained by denoising the second image by 2D sparse-
KSVD algorithm. The PSNR value has improved by 0.38 dB but it is still noisy. On the other hand,
the fourth image shows a result obtained by denoising the 9 slices of images by 3D sparse-KSVD
algorithm. The PSNR value has improved by 2.65 dB from the 2D-denoised result, and this result
is clear enough to identify the target satellite.
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Figure 14. Results of Simulation 3: (a) True Image for Comparison, (b) Best re-
sult directly obtained by simulation 3 before denoising, (c) Best result after being
denoised by 2D-sparse KSVD algorithm, (d) Best result after being denoised by 3D-
sparse KSVD algorithm

CONCLUSIONS

This research has discussed a potential application of a compressed sensing technique to char-
acterize an unknown stabilized satellite in a known orbit from its non-resolved light curve. Com-
pressed sensing is a mathematical theory for efficient signal compression and reconstruction. It
enables to reconstruct an image from only a fraction of its linear measurement. This measurement
is done by an inner product with a random matrix, which is referred to as a sensing matrix. In this
research, it has been compared with light curve measurements, and an adapted light curve model
has been introduced by considering attenuation and noise due to atmospheric turbulence. In this
model, the atmospheric turbulence is considered as a pseudo-sensing matrix, and the light curve
is considered as an image compressed by an unknown sensing matrix. However, the atmospheric
turbulence, or the sensing matrix is usually unknown and hence there is a significant deviation from
a classical compressed sensing scheme, where the sensing matrix is known.

This research has proposed two approaches to reconstruct an image of a target satellite without
the knowledge of the sensing matrix. It has been assumed that the sensing matrix can be inferred
from simultaneous observations of a known satellite. In the first case under those assumptions, it
is assumed that the images of the reference satellite are abundant enough to construct a full-rank
matrix of size 1282 × 1282. In this case, the sensing matrix and the target image can be estimated
accurately. In a more realistic case, only fewer images of the reference satellite would be available.
As a result, the reference satellite images are sparse and not sufficient for constructing a full-rank
matrix. However, utilizing the sparsity property, the target satellite image estimation is achieved.
This has been done by using the batch-OMP algorithm and the three-dimensional sparse KSVD
algorithm.

Future work is focused on overcoming the significant limitation of a simultaneous reference satel-
lite observation.
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